IDENTIFYING SHIFTS IN GTA'S PEDAGOGICAL CONTENT KNOWLEDGE (PCK)

Outcomes of a "Scientific Teaching" course for biology graduate teaching assistants at a large research university

Kathleen M. Hill Doctoral Student Mary Lou Fulton Teacher's College Arizona State University

Miles Orchinik, Ph.D. Director of Undergraduate Programs School of Life Sciences Arizona State University

School of Life Sciences (SoLS)

Arizona State University

 Over 20,000 students in undergraduate biology courses

School of Life Sciences (SoLS)

Arizona State University

- Over 20,000 students in undergraduate biology courses
- Over 10,000 lab seats

School of Life Sciences (SoLS)

Arizona State University

- Over 20,000 students in undergraduate biology courses
- Over 10,000 lab seats
- Approximately 2,800 majors in biology

Problem

- SoLS serves a growing number of students in undergraduate courses.
- Many courses are taught by Graduate Teaching Assistants (GTAs) who have little to no training in teaching science.

Innovative TA Program

 Innovative TAs (ITAs) intended to have roles different from traditional GTAs

Innovative TA Program

- Innovative TAs (ITAs) intended to have roles different from traditional GTAs
- ITA Program Requirements:
 - Faculty submit proposals
 - ITAs must be knowledgeable about the course content
 - ITA Training:
 - Fall semester limited to orientation 2.5 days
 - Spring semester "Scientific Teaching" course

Purpose of the pilot study

 To identify shifts in pedagogical content knowledge (PCK) of ten biology ITAs at a large research university during their participation in a "Scientific Teaching" course

Purpose of the pilot study

- To identify shifts in pedagogical content knowledge (PCK) of ten biology ITAs at a large research university during their participation in a "Scientific Teaching" course
- Research questions:
 - 1. What were their orientations toward teaching?

Purpose of the pilot study

- To identify shifts in pedagogical content knowledge (PCK) of ten biology ITAs at a large research university during their participation in a "Scientific Teaching" course
- Research questions:
 - 1. What were their orientations toward teaching?
 - 2. What were the changes in the areas of **student understanding of science** and **instructional strategies**?

- To identify shifts in pedagogical content knowledge (PCK) of ten biology ITAs at a large research university during their participation in a "Scientific Teaching" course
- Research questions:
 - 1. What were their orientations toward teaching?
 - 2. What were the changes in the areas of **student understanding of science** and **instructional strategies**?
 - 3. What were the **barriers and bridges** in building their PCK?

Par	tic	ipa	nts

Name*	Gender	Prior K-12 Teaching (years)	Total GTA Experience (semesters)
Bruce	М	0	Over 9
Ellen	F	0	Over 9
Judith	F	1	8
Scott	М	3	6
Danielle	F	0	4
Patrick	М	0	4
Rose	F	0	3
Annie	F	0	2
Joe	М	1**	2
Laura	F	0	1
* - pseudonym	** - ITA gained	teaching experience in an after-sch	nool program

- Based upon the small sample size (n = 10), the findings are not generalizable to a large population of graduate teaching assistants.
- Given that the data was collected at the beginning and end of the "Scientific Teaching" course, the findings cannot be extended beyond the timeframe of the study.

Question #1 – Analysis of Questionnaire

• Excerpt from Questionnaire (Annie)

I worked with the students directly every week during recitation. At first I was primarily <u>lecturing</u> and <u>taking questions</u> from students. Later in the semester I had them <u>work in groups to</u> <u>solve problems</u>; I would walk around to the groups and <u>ask</u> <u>them questions about the problems</u>, and <u>take questions</u> <u>from them</u>. I would also <u>picked individuals or groups to</u> <u>explain</u> how to solve the problems to the class.

Constructivist Framework Orientation

Indicators of Knowledge of Student	Indicators of Knowledge of
Understanding in Science	Instructional Strategies
 Knowledge of common student misconceptions Connected to students' lives (authenticity) Typical student trajectories of understanding (learning progressions) 	 Activities build on each other Consider students' ideas and experiences Include multiple representations and learning experiences Instructional decisions consider pros and cons Inquiry application Motivating environment

Question #2 – Analysis of Concept Maps

Score	0	1	2	3
Level of explanation of knowledge domain of PCK	The topic is not present.	The topic was just mentioned.	The topic was partly elaborated.	The topic was clear and explained.

 Scored each concept map for student understanding and instructional strategies

Scoring rubric for concept maps in four domains of knowledge (Weizman, et. al., 2008)

Question #2 – Analysis of Concept Maps

Score	0	1	2	3
Level of explanation of knowledge domain of PCK	The topic is not present.	The topic was just mentioned.	The topic was partly elaborated.	The topic was clear and explained.

- Scored each concept map for student understanding and instructional strategies
- Calculated average score
- Calculated differences between the averages of the preand post-concept map scores

Scoring rubric for concept maps in four domains of knowledge (Weizman, et. al., 2008)

20

Discussion

- In light of the Concerns-based Adoption Model (CBAM) study, the findings of this pilot study indicate that the ITAs primarily had a concern for task and did not transition to thinking about students. (Hall & Hord, 2001)
- As a minimum of 80 hours of professional development are needed before changes are found in teacher practices, the "Scientific Teaching" course is not currently designed to produce significant changes. (Supovitz & Turner, 2000)
- Research in education also reports that teachers build their knowledge when they are engaged in practice. Those ITAs with higher PCK were afforded opportunities to practice. (Cochran-Smith, M. & Lytle, S. L., 1999)

Implications

Considerations for the "Scientific Teaching" Course:

- Incorporate strategies for ITAs to develop more interest in learning to teach undergraduate biology
- Provide more experiences in thinking about student understanding

Future Study

- Fall 2012 Approximately 40 GTAs enrolled in the "Scientific Teaching" course
- Research using more pre- and post- data to capture changes in PCK
- Make classroom observations during the fall semester training and following the training in the spring

Thank you to ..

Dr. Julie Luft, University of Georgia Dr. Valerie Stout, Arizona State University Christian Wright, Arizona State University

For more information, contact

Kathleen Hill kathyhill@asu.edu

References

Cochran-Smith, M. & Lytle, S. L., (1999). Relationships of Knowledge and Practice: Teacher Learning in Communities. *Review of Research in Education*, 24, 249-305.

Friedrichsen, P., Van Driel, J. H., & Abell, S. K. (2011). Taking a Closer Look at Science Teaching Orientations. *Science Education*, *95*, 358-376.

Hall, G. E. & Hord, S. M. (2001). *Implementing change: patterns, principles, and potholes*. Boston: Allyn and Bacon.

Supovitz, J.A., & Turner, H.M. (2000). The effects of professional development on science teaching practices and classroom culture. *Journal of Research in Science Teaching*, 37, 963 – 980.

Weizman, A., Covitt, B. A., Koehler, M. J., Lundeberg, M. A., & Oslund, J. A. (2008). Measuring teachers' learning from a problem-based learning approach to professional development in science education. *Interdisciplinary Journal of Problem-based Learning*, *2*, 29-60.